Properties

Label 138600.bq
Number of curves $4$
Conductor $138600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 138600.bq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 138600.bq do not have complex multiplication.

Modular form 138600.2.a.bq

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} + q^{11} - 2 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 138600.bq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
138600.bq1 138600dz3 \([0, 0, 0, -6654675, 6607516750]\) \(1397097631688978/433125\) \(10103940000000000\) \([2]\) \(3145728\) \(2.4335\)  
138600.bq2 138600dz2 \([0, 0, 0, -417675, 102325750]\) \(690862540036/12006225\) \(140040608400000000\) \([2, 2]\) \(1572864\) \(2.0869\)  
138600.bq3 138600dz1 \([0, 0, 0, -53175, -2285750]\) \(5702413264/2525985\) \(7365772260000000\) \([2]\) \(786432\) \(1.7403\) \(\Gamma_0(N)\)-optimal
138600.bq4 138600dz4 \([0, 0, 0, -12675, 292270750]\) \(-9653618/1581886845\) \(-36902256320160000000\) \([2]\) \(3145728\) \(2.4335\)