Show commands: SageMath
Rank
The elliptic curves in class 138384r have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 138384r do not have complex multiplication.Modular form 138384.2.a.r
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 138384r
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
138384.cm4 | 138384r1 | \([0, 0, 0, -95139, -56304990]\) | \(-35937/496\) | \(-1314435608537923584\) | \([2]\) | \(1474560\) | \(2.1582\) | \(\Gamma_0(N)\)-optimal |
138384.cm3 | 138384r2 | \([0, 0, 0, -2862819, -1858064670]\) | \(979146657/3844\) | \(10186875966168907776\) | \([2, 2]\) | \(2949120\) | \(2.5048\) | |
138384.cm2 | 138384r3 | \([0, 0, 0, -4246659, 123870978]\) | \(3196010817/1847042\) | \(4894793901744160186368\) | \([2]\) | \(5898240\) | \(2.8514\) | |
138384.cm1 | 138384r4 | \([0, 0, 0, -45761859, -119152619838]\) | \(3999236143617/62\) | \(164304451067240448\) | \([2]\) | \(5898240\) | \(2.8514\) |