Properties

Label 138384r
Number of curves $4$
Conductor $138384$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 138384r have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(31\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 138384r do not have complex multiplication.

Modular form 138384.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - 2 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 138384r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
138384.cm4 138384r1 \([0, 0, 0, -95139, -56304990]\) \(-35937/496\) \(-1314435608537923584\) \([2]\) \(1474560\) \(2.1582\) \(\Gamma_0(N)\)-optimal
138384.cm3 138384r2 \([0, 0, 0, -2862819, -1858064670]\) \(979146657/3844\) \(10186875966168907776\) \([2, 2]\) \(2949120\) \(2.5048\)  
138384.cm2 138384r3 \([0, 0, 0, -4246659, 123870978]\) \(3196010817/1847042\) \(4894793901744160186368\) \([2]\) \(5898240\) \(2.8514\)  
138384.cm1 138384r4 \([0, 0, 0, -45761859, -119152619838]\) \(3999236143617/62\) \(164304451067240448\) \([2]\) \(5898240\) \(2.8514\)