Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy+y=x^3-971x-970\) | (homogenize, simplify) | 
| \(y^2z+xyz+yz^2=x^3-971xz^2-970z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-1257795x-41471298\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-9, 88)$ | $1.7695785554159057472401646287$ | $\infty$ | 
| $(-1, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-9, 88\right) \), \( \left(-9, -80\right) \), \( \left(-1, 0\right) \), \( \left(120, 1210\right) \), \( \left(120, -1331\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 13794 \) | = | $2 \cdot 3 \cdot 11^{2} \cdot 19$ |  | 
| Discriminant: | $\Delta$ | = | $58163890752$ | = | $2^{6} \cdot 3^{3} \cdot 11^{6} \cdot 19 $ |  | 
| j-invariant: | $j$ | = | \( \frac{57066625}{32832} \) | = | $2^{-6} \cdot 3^{-3} \cdot 5^{3} \cdot 7^{3} \cdot 11^{3} \cdot 19^{-1}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.75514353801523317745867673982$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.44380409838395209457229504916$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.047658380732593$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.3830401671656842$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.7695785554159057472401646287$ |  | 
| Real period: | $\Omega$ | ≈ | $0.93044811639595356762086619967$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2\cdot3\cdot2\cdot1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $4.9395031011042061234664698205 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 4.939503101 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.930448 \cdot 1.769579 \cdot 12}{2^2} \\ & \approx 4.939503101\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 17280 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 | 
| $3$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 | 
| $11$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 | 
| $19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 8.6.0.4 | 
| $3$ | 3B | 3.4.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5016 = 2^{3} \cdot 3 \cdot 11 \cdot 19 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 2509 & 924 \\ 462 & 529 \end{array}\right),\left(\begin{array}{rr} 911 & 0 \\ 0 & 5015 \end{array}\right),\left(\begin{array}{rr} 1695 & 2530 \\ 4334 & 4709 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 4966 & 5007 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 386 & 11 \\ 3333 & 892 \end{array}\right),\left(\begin{array}{rr} 1882 & 2739 \\ 1485 & 1816 \end{array}\right),\left(\begin{array}{rr} 5005 & 12 \\ 5004 & 13 \end{array}\right)$.
The torsion field $K:=\Q(E[5016])$ is a degree-$1248141312000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5016\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 6897 = 3 \cdot 11^{2} \cdot 19 \) | 
| $3$ | split multiplicative | $4$ | \( 2299 = 11^{2} \cdot 19 \) | 
| $11$ | additive | $62$ | \( 114 = 2 \cdot 3 \cdot 19 \) | 
| $19$ | nonsplit multiplicative | $20$ | \( 726 = 2 \cdot 3 \cdot 11^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 13794m
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 114a1, its twist by $-11$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{57}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-11}) \) | \(\Z/6\Z\) | 2.0.11.1-12996.2-c3 | 
| $4$ | 4.0.441408.1 | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{-11}, \sqrt{57})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $6$ | 6.2.4683345777.1 | \(\Z/6\Z\) | not in database | 
| $8$ | 8.0.633038481985536.65 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.194841022464.2 | \(\Z/12\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $18$ | 18.0.33772294178588930351260876773952794624.1 | \(\Z/18\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | split | ss | ord | add | ord | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | 2 | 2 | 5,1 | 1 | - | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
