Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-161281x+1884326399\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-161281xz^2+1884326399z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-13063788x+1373713136208\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-1279, 0)$ | $0$ | $2$ |
Integral points
\( \left(-1279, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 137280 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 11 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-1533715376211901808640$ | = | $-1 \cdot 2^{24} \cdot 3^{8} \cdot 5 \cdot 11^{8} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( -\frac{1769848555063681}{5850659851882560} \) | = | $-1 \cdot 2^{-6} \cdot 3^{-8} \cdot 5^{-1} \cdot 11^{-8} \cdot 13^{-1} \cdot 73^{3} \cdot 1657^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7441081221923754679618065497$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.7043873513524575038359583675$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0432171811138518$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.753840308309017$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.12099035494216164373184490505$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2^{3}\cdot1\cdot2^{3}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.8716913581491725994190369617 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.871691358 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.120990 \cdot 1.000000 \cdot 128}{2^2} \\ & \approx 3.871691358\end{aligned}$$
Modular invariants
Modular form 137280.2.a.ez
For more coefficients, see the Downloads section to the right.
Modular degree: | 5898240 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{14}^{*}$ | additive | -1 | 6 | 24 | 6 |
$3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$11$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.48.0.212 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 34320 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 24961 & 16 \\ 28088 & 129 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 34307 & 34304 \\ 25476 & 25415 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 34316 & 34317 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 34222 & 34307 \end{array}\right),\left(\begin{array}{rr} 11441 & 16 \\ 22888 & 129 \end{array}\right),\left(\begin{array}{rr} 30022 & 8569 \\ 4373 & 17274 \end{array}\right),\left(\begin{array}{rr} 7936 & 5 \\ 18435 & 34306 \end{array}\right),\left(\begin{array}{rr} 27472 & 5 \\ 34275 & 34306 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 34305 & 16 \\ 34304 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[34320])$ is a degree-$1020235087872000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/34320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 65 = 5 \cdot 13 \) |
$3$ | split multiplicative | $4$ | \( 45760 = 2^{6} \cdot 5 \cdot 11 \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 27456 = 2^{6} \cdot 3 \cdot 11 \cdot 13 \) |
$11$ | split multiplicative | $12$ | \( 12480 = 2^{6} \cdot 3 \cdot 5 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 10560 = 2^{6} \cdot 3 \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 137280.ez
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 4290.bc6, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-65}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{130}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{-65})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.4942652416000000.21 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.1235663104000000.38 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 11 | 13 |
---|---|---|---|---|---|
Reduction type | add | split | nonsplit | split | nonsplit |
$\lambda$-invariant(s) | - | 3 | 0 | 1 | 0 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.