Properties

Label 1369a
Number of curves $3$
Conductor $1369$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1369a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(37\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1369a do not have complex multiplication.

Modular form 1369.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{4} - q^{7} - 2 q^{9} + 3 q^{11} - 2 q^{12} + 4 q^{13} + 4 q^{16} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 1369a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1369.c3 1369a1 \([0, 1, 1, -4563, 116200]\) \(4096000/37\) \(94931877133\) \([]\) \(912\) \(0.92893\) \(\Gamma_0(N)\)-optimal
1369.c2 1369a2 \([0, 1, 1, -31943, -2138543]\) \(1404928000/50653\) \(129961739795077\) \([]\) \(2736\) \(1.4782\)  
1369.c1 1369a3 \([0, 1, 1, -2564593, -1581651042]\) \(727057727488000/37\) \(94931877133\) \([]\) \(8208\) \(2.0275\)