Properties

Label 13680.bt
Number of curves $2$
Conductor $13680$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 13680.bt have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 13680.bt do not have complex multiplication.

Modular form 13680.2.a.bt

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 2 q^{7} + 4 q^{11} - 6 q^{13} - 4 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 13680.bt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13680.bt1 13680bj2 \([0, 0, 0, -287787, -59296934]\) \(882774443450089/2166000000\) \(6467641344000000\) \([2]\) \(129024\) \(1.9120\)  
13680.bt2 13680bj1 \([0, 0, 0, -11307, -1623206]\) \(-53540005609/350208000\) \(-1045715484672000\) \([2]\) \(64512\) \(1.5654\) \(\Gamma_0(N)\)-optimal