Properties

Label 13680.bh
Number of curves $4$
Conductor $13680$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 13680.bh have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 13680.bh do not have complex multiplication.

Modular form 13680.2.a.bh

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 2 q^{7} + 6 q^{11} - 4 q^{13} + 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 13680.bh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13680.bh1 13680bo4 \([0, 0, 0, -66705267, 133900237874]\) \(10993009831928446009969/3767761230468750000\) \(11250474750000000000000000\) \([2]\) \(3317760\) \(3.5088\)  
13680.bh2 13680bo2 \([0, 0, 0, -59758707, 177807411506]\) \(7903870428425797297009/886464000000\) \(2646967320576000000\) \([2]\) \(1105920\) \(2.9595\)  
13680.bh3 13680bo1 \([0, 0, 0, -3725427, 2793064754]\) \(-1914980734749238129/20440940544000\) \(-61036321409335296000\) \([2]\) \(552960\) \(2.6129\) \(\Gamma_0(N)\)-optimal
13680.bh4 13680bo3 \([0, 0, 0, 12310413, 14539151666]\) \(69096190760262356111/70568821500000000\) \(-210717371897856000000000\) \([2]\) \(1658880\) \(3.1622\)