Show commands: SageMath
                    
            
    Rank
The elliptic curves in class 1365c have rank \(0\).
L-function data
| Bad L-factors: | 
 | ||||||||||||||||||||||||
| Good L-factors: | 
 | ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 1365c do not have complex multiplication.Modular form 1365.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 1365c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | 
|---|---|---|---|---|---|---|---|---|
| 1365.d4 | 1365c1 | \([1, 0, 1, -29, 11]\) | \(2565726409/1404585\) | \(1404585\) | \([2]\) | \(256\) | \(-0.12967\) | \(\Gamma_0(N)\)-optimal | 
| 1365.d2 | 1365c2 | \([1, 0, 1, -274, -1753]\) | \(2263054145689/16769025\) | \(16769025\) | \([2, 2]\) | \(512\) | \(0.21691\) | |
| 1365.d1 | 1365c3 | \([1, 0, 1, -4369, -111499]\) | \(9219915604149769/511875\) | \(511875\) | \([2]\) | \(1024\) | \(0.56348\) | |
| 1365.d3 | 1365c4 | \([1, 0, 1, -99, -3923]\) | \(-105756712489/6558605235\) | \(-6558605235\) | \([2]\) | \(1024\) | \(0.56348\) | 
