Show commands: SageMath
Rank
The elliptic curves in class 13650bz have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 13650bz do not have complex multiplication.Modular form 13650.2.a.bz
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 13650bz
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
13650.ca3 | 13650bz1 | \([1, 1, 1, -3472253588, 78751157917781]\) | \(296304326013275547793071733369/268420373544960000000\) | \(4194068336640000000000000\) | \([4]\) | \(10321920\) | \(4.0229\) | \(\Gamma_0(N)\)-optimal |
13650.ca2 | 13650bz2 | \([1, 1, 1, -3497341588, 77555363485781]\) | \(302773487204995438715379645049/8911747415025000000000000\) | \(139246053359765625000000000000\) | \([2, 2]\) | \(20643840\) | \(4.3694\) | |
13650.ca1 | 13650bz3 | \([1, 1, 1, -8273749588, -180064978402219]\) | \(4008766897254067912673785886329/1423480510711669921875000000\) | \(22241882979869842529296875000000\) | \([2]\) | \(41287680\) | \(4.7160\) | |
13650.ca4 | 13650bz4 | \([1, 1, 1, 877658412, 258645363485781]\) | \(4784981304203817469820354951/1852343836482910078035000000\) | \(-28942872445045469969296875000000\) | \([2]\) | \(41287680\) | \(4.7160\) |