Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-8768001x+9861204148\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-8768001xz^2+9861204148z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-11363328675x+460118430726750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(2492, 57816)$ | $0.92628416148439831334202017952$ | $\infty$ |
| $(1547, -774)$ | $0$ | $2$ |
| $(1867, -934)$ | $0$ | $2$ |
Integral points
\( \left(-2053, 139626\right) \), \( \left(-2053, -137574\right) \), \( \left(-133, 105066\right) \), \( \left(-133, -104934\right) \), \( \left(1022, 43851\right) \), \( \left(1022, -44874\right) \), \( \left(1547, -774\right) \), \( \left(1867, -934\right) \), \( \left(1988, 15984\right) \), \( \left(1988, -17973\right) \), \( \left(2492, 57816\right) \), \( \left(2492, -60309\right) \), \( \left(4571, 253242\right) \), \( \left(4571, -257814\right) \)
Invariants
| Conductor: | $N$ | = | \( 13650 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $1124800797802500000000$ | = | $2^{8} \cdot 3^{8} \cdot 5^{10} \cdot 7^{4} \cdot 13^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{4770955732122964500481}{71987251059360000} \) | = | $2^{-8} \cdot 3^{-8} \cdot 5^{-4} \cdot 7^{-4} \cdot 13^{-4} \cdot 3217^{3} \cdot 5233^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8415700678875410915287953030$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.0368511116704909042284156364$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0084981242776025$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.256734086711076$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.92628416148439831334202017952$ |
|
| Real period: | $\Omega$ | ≈ | $0.15500017644258910463157664965$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 512 $ = $ 2\cdot2^{3}\cdot2^{2}\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.5943746709138379996130202508 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.594374671 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.155000 \cdot 0.926284 \cdot 512}{4^2} \\ & \approx 4.594374671\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 786432 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
| $3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
| $5$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
| $7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $13$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.48.0.44 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7280 = 2^{4} \cdot 5 \cdot 7 \cdot 13 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 6385 & 8 \\ 328 & 4725 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 8 & 129 \end{array}\right),\left(\begin{array}{rr} 6385 & 76 \\ 6904 & 5375 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 4161 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2805 & 4 \\ 4436 & 7245 \end{array}\right),\left(\begin{array}{rr} 2899 & 7268 \\ 4276 & 7195 \end{array}\right),\left(\begin{array}{rr} 7265 & 16 \\ 7264 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[7280])$ is a degree-$811550638080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 25 = 5^{2} \) |
| $3$ | split multiplicative | $4$ | \( 4550 = 2 \cdot 5^{2} \cdot 7 \cdot 13 \) |
| $5$ | additive | $18$ | \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \) |
| $7$ | split multiplicative | $8$ | \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 13650.bo
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 2730.w4, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-5}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{5})\) | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{13})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.2808830402560000.38 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.2808830402560000.59 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.4569760000.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | 16.0.9671731157401600000000.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | split | add | split | ord | nonsplit | ord | ord | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 4 | 4 | - | 2 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 1 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.