Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-1866x+10971\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-1866xz^2+10971z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2418363x+519118038\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(3, 72)$ | $0.26317110131860926522700910408$ | $\infty$ |
$(-46, 23)$ | $0$ | $2$ |
$(6, -3)$ | $0$ | $2$ |
Integral points
\( \left(-46, 23\right) \), \( \left(-39, 177\right) \), \( \left(-39, -138\right) \), \( \left(-21, 213\right) \), \( \left(-21, -192\right) \), \( \left(3, 72\right) \), \( \left(3, -75\right) \), \( \left(6, -3\right) \), \( \left(45, 114\right) \), \( \left(45, -159\right) \), \( \left(66, 387\right) \), \( \left(66, -453\right) \), \( \left(71, 452\right) \), \( \left(71, -523\right) \), \( \left(150, 1689\right) \), \( \left(150, -1839\right) \), \( \left(591, 14037\right) \), \( \left(591, -14628\right) \), \( \left(32805, 5925306\right) \), \( \left(32805, -5958111\right) \)
Invariants
Conductor: | $N$ | = | \( 1365 \) | = | $3 \cdot 5 \cdot 7 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $362361861225$ | = | $3^{6} \cdot 5^{2} \cdot 7^{6} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{718576775407009}{362361861225} \) | = | $3^{-6} \cdot 5^{-2} \cdot 7^{-6} \cdot 13^{-2} \cdot 43^{3} \cdot 2083^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.91061338572598651699923847204$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.91061338572598651699923847204$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9665140132672618$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.738706405312025$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.26317110131860926522700910408$ |
|
Real period: | $\Omega$ | ≈ | $0.84515383544607554352766770932$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 144 $ = $ ( 2 \cdot 3 )\cdot2\cdot( 2 \cdot 3 )\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.0017805909219133249115118347 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.001780591 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.845154 \cdot 0.263171 \cdot 144}{4^2} \\ & \approx 2.001780591\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1728 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$7$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5460 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 4371 & 2 \\ 4366 & 5459 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 2 \\ 3638 & 5459 \end{array}\right),\left(\begin{array}{rr} 2341 & 4 \\ 4682 & 9 \end{array}\right),\left(\begin{array}{rr} 5457 & 4 \\ 5456 & 5 \end{array}\right),\left(\begin{array}{rr} 4201 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2731 & 4 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[5460])$ is a degree-$2434651914240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5460\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 1 \) |
$3$ | split multiplicative | $4$ | \( 65 = 5 \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 273 = 3 \cdot 7 \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 195 = 3 \cdot 5 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 105 = 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 1365.b
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{7}, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-7}, \sqrt{-13})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{13}, \sqrt{-15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.39039316875.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | split | nonsplit | split | ord | nonsplit | ord | ss | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 3 | 2 | 1 | 4 | 1 | 1 | 1 | 3,1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.