Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+159587x-158246575\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+159587xz^2-158246575z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+206824725x-7383772677402\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1094, 35867)$ | $0.28635815291643000264467694515$ | $\infty$ |
$(1775/4, -1775/8)$ | $0$ | $2$ |
Integral points
\( \left(464, 3737\right) \), \( \left(464, -4201\right) \), \( \left(800, 21545\right) \), \( \left(800, -22345\right) \), \( \left(1094, 35867\right) \), \( \left(1094, -36961\right) \), \( \left(1598, 63839\right) \), \( \left(1598, -65437\right) \), \( \left(9374, 903647\right) \), \( \left(9374, -913021\right) \), \( \left(37508, 7245839\right) \), \( \left(37508, -7283347\right) \)
Invariants
Conductor: | $N$ | = | \( 13566 \) | = | $2 \cdot 3 \cdot 7 \cdot 17 \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-11080072238736418848$ | = | $-1 \cdot 2^{5} \cdot 3^{14} \cdot 7^{4} \cdot 17^{4} \cdot 19^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{449485901393767859375}{11080072238736418848} \) | = | $2^{-5} \cdot 3^{-14} \cdot 5^{6} \cdot 7^{-4} \cdot 17^{-4} \cdot 19^{-2} \cdot 306407^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3344922135202062747129652689$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.3344922135202062747129652689$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.03861734520294$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.38948065822324$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.28635815291643000264467694515$ |
|
Real period: | $\Omega$ | ≈ | $0.11004259076082139761312639735$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1120 $ = $ 5\cdot( 2 \cdot 7 )\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $8.8232460490740779260652478363 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.823246049 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.110043 \cdot 0.286358 \cdot 1120}{2^2} \\ & \approx 8.823246049\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 250880 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$3$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
$7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$17$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$19$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.5 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 456 = 2^{3} \cdot 3 \cdot 19 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 305 & 4 \\ 154 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 97 & 4 \\ 194 & 9 \end{array}\right),\left(\begin{array}{rr} 172 & 289 \\ 57 & 400 \end{array}\right),\left(\begin{array}{rr} 453 & 4 \\ 452 & 5 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 227 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[456])$ is a degree-$756449280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/456\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1 \) |
$3$ | split multiplicative | $4$ | \( 4522 = 2 \cdot 7 \cdot 17 \cdot 19 \) |
$5$ | good | $2$ | \( 6783 = 3 \cdot 7 \cdot 17 \cdot 19 \) |
$7$ | split multiplicative | $8$ | \( 646 = 2 \cdot 17 \cdot 19 \) |
$17$ | nonsplit multiplicative | $18$ | \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 714 = 2 \cdot 3 \cdot 7 \cdot 17 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 13566s
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.103968.1 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.13627293696.17 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.691798081536.13 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | ss | split | ss | ss | nonsplit | split | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 10 | 4 | 1,1 | 2 | 1,1 | 3,1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 1 | 0 | 0,0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.