Properties

Label 135450cu
Number of curves $2$
Conductor $135450$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 135450cu have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 135450cu do not have complex multiplication.

Modular form 135450.2.a.cu

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{7} + q^{8} + 6 q^{13} - q^{14} + q^{16} - 2 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 135450cu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
135450.dk2 135450cu1 \([1, -1, 1, -2603855, -829221353]\) \(6348375775125747/2706453299200\) \(832361254502400000000\) \([2]\) \(5898240\) \(2.7108\) \(\Gamma_0(N)\)-optimal
135450.dk1 135450cu2 \([1, -1, 1, -19883855, 33557978647]\) \(2826924016851247347/54574679290880\) \(16784272070037360000000\) \([2]\) \(11796480\) \(3.0574\)