Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-2497057x-1517930975\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-2497057xz^2-1517930975z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-202261644x-1107178465680\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-14205449042496/15561315025, 50179428844563767/1941196242793625)$ | $27.772095114970399813612295874$ | $\infty$ |
| $(-911, 0)$ | $0$ | $2$ |
| $(1825, 0)$ | $0$ | $2$ |
Integral points
\( \left(-913, 0\right) \), \( \left(-911, 0\right) \), \( \left(1825, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 134976 \) | = | $2^{6} \cdot 3 \cdot 19 \cdot 37$ |
|
| Discriminant: | $\Delta$ | = | $3591526272270336$ | = | $2^{16} \cdot 3^{4} \cdot 19^{2} \cdot 37^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{26274189238602645028}{54802341801} \) | = | $2^{2} \cdot 3^{-4} \cdot 13^{3} \cdot 19^{-2} \cdot 37^{-4} \cdot 144061^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2339484678863617958716875918$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3097522271397680499820447632$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9746787246431069$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.72413201959782$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $27.772095114970399813612295874$ |
|
| Real period: | $\Omega$ | ≈ | $0.12009985429653121320611549281$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.6708491536347025793085402676 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.670849154 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.120100 \cdot 27.772095 \cdot 32}{4^2} \\ & \approx 6.670849154\end{aligned}$$
Modular invariants
Modular form 134976.2.a.p
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1703936 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{6}^{*}$ | additive | 1 | 6 | 16 | 0 |
| $3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $19$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $37$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.48.0.106 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5624 = 2^{3} \cdot 19 \cdot 37 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 3263 & 2 \\ 2054 & 5619 \end{array}\right),\left(\begin{array}{rr} 5621 & 4210 \\ 4226 & 21 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 4257 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4222 \\ 4 & 1423 \end{array}\right),\left(\begin{array}{rr} 5617 & 8 \\ 5616 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 5620 & 5621 \end{array}\right)$.
The torsion field $K:=\Q(E[5624])$ is a degree-$1794770472960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5624\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 1 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 44992 = 2^{6} \cdot 19 \cdot 37 \) |
| $19$ | nonsplit multiplicative | $20$ | \( 7104 = 2^{6} \cdot 3 \cdot 37 \) |
| $37$ | nonsplit multiplicative | $38$ | \( 3648 = 2^{6} \cdot 3 \cdot 19 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 134976.p
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 16872.c2, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{-19})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{19})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.8540717056.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.1000417426149376.29 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.122825015296.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | ord | ss | ord | ord | ord | nonsplit | ss | ord | ord | nonsplit | ord | ord | ord |
| $\lambda$-invariant(s) | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 3 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.