Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2+7177x-103075\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z+7177xz^2-103075z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+114829x-6481970\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(25, 290)$ | $2.1546029172456752296848918262$ | $\infty$ |
$(14, -7)$ | $0$ | $2$ |
Integral points
\( \left(14, -7\right) \), \( \left(25, 290\right) \), \( \left(25, -315\right) \), \( \left(718, 19001\right) \), \( \left(718, -19719\right) \)
Invariants
Conductor: | $N$ | = | \( 133826 \) | = | $2 \cdot 7 \cdot 11^{2} \cdot 79$ |
|
Discriminant: | $\Delta$ | = | $-28089190936576$ | = | $-1 \cdot 2^{12} \cdot 7^{2} \cdot 11^{6} \cdot 79 $ |
|
j-invariant: | $j$ | = | \( \frac{23076099423}{15855616} \) | = | $2^{-12} \cdot 3^{3} \cdot 7^{-2} \cdot 13^{3} \cdot 73^{3} \cdot 79^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2691402030240192230271985481$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.070192566624833950996226759118$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9111471608662639$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.2402979204372238$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.1546029172456752296848918262$ |
|
Real period: | $\Omega$ | ≈ | $0.37646648239894243636052242126$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.2445431248879160825179677662 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.244543125 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.376466 \cdot 2.154603 \cdot 16}{2^2} \\ & \approx 3.244543125\end{aligned}$$
Modular invariants
Modular form 133826.2.a.e
For more coefficients, see the Downloads section to the right.
Modular degree: | 245760 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$11$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$79$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6952 = 2^{3} \cdot 11 \cdot 79 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 6946 & 6947 \end{array}\right),\left(\begin{array}{rr} 4665 & 4664 \\ 6886 & 5303 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1288 & 3795 \\ 3333 & 1266 \end{array}\right),\left(\begin{array}{rr} 1035 & 2926 \\ 242 & 5611 \end{array}\right),\left(\begin{array}{rr} 6945 & 8 \\ 6944 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 1263 & 0 \\ 0 & 6951 \end{array}\right)$.
The torsion field $K:=\Q(E[6952])$ is a degree-$16241651712000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6952\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 9559 = 11^{2} \cdot 79 \) |
$3$ | good | $2$ | \( 66913 = 7 \cdot 11^{2} \cdot 79 \) |
$7$ | nonsplit multiplicative | $8$ | \( 19118 = 2 \cdot 11^{2} \cdot 79 \) |
$11$ | additive | $62$ | \( 1106 = 2 \cdot 7 \cdot 79 \) |
$79$ | split multiplicative | $80$ | \( 1694 = 2 \cdot 7 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 133826x
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1106e1, its twist by $-11$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-79}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{869}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-11}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-11}, \sqrt{-79})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 79 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | ss | ord | nonsplit | add | ord | ord | ord | ss | ord | ss | ord | ord | ord | ss | split |
$\lambda$-invariant(s) | 6 | 1,1 | 1 | 1 | - | 1 | 1 | 3 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 | 2 |
$\mu$-invariant(s) | 0 | 0,0 | 0 | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.