Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-32952x+1545300\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-32952xz^2+1545300z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2669139x+1134531090\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(198, 1680)$ | $2.9176820081898988479679572665$ | $\infty$ |
$(51, 0)$ | $0$ | $2$ |
$(150, 0)$ | $0$ | $2$ |
Integral points
\( \left(-202, 0\right) \), \( \left(51, 0\right) \), \( \left(150, 0\right) \), \((198,\pm 1680)\), \((876,\pm 25410)\)
Invariants
Conductor: | $N$ | = | \( 133584 \) | = | $2^{4} \cdot 3 \cdot 11^{2} \cdot 23$ |
|
Discriminant: | $\Delta$ | = | $1243703169662976$ | = | $2^{14} \cdot 3^{4} \cdot 11^{6} \cdot 23^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{545338513}{171396} \) | = | $2^{-2} \cdot 3^{-4} \cdot 19^{3} \cdot 23^{-2} \cdot 43^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6005354800563477767395888556$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.29155933690278280470861505484$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9444691501696788$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.628223402573886$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.9176820081898988479679572665$ |
|
Real period: | $\Omega$ | ≈ | $0.44856770435377165553988968932$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{2}\cdot2^{2}\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $10.470223363584362532812177274 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.470223364 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.448568 \cdot 2.917682 \cdot 128}{4^2} \\ & \approx 10.470223364\end{aligned}$$
Modular invariants
Modular form 133584.2.a.dr
For more coefficients, see the Downloads section to the right.
Modular degree: | 552960 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{6}^{*}$ | additive | -1 | 4 | 14 | 2 |
$3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$11$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$23$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.12.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2024 = 2^{3} \cdot 11 \cdot 23 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 2021 & 4 \\ 2020 & 5 \end{array}\right),\left(\begin{array}{rr} 735 & 0 \\ 0 & 2023 \end{array}\right),\left(\begin{array}{rr} 43 & 1100 \\ 176 & 725 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1013 & 924 \\ 1474 & 1849 \end{array}\right),\left(\begin{array}{rr} 1937 & 1474 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[2024])$ is a degree-$112851763200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2024\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 121 = 11^{2} \) |
$3$ | split multiplicative | $4$ | \( 44528 = 2^{4} \cdot 11^{2} \cdot 23 \) |
$11$ | additive | $62$ | \( 1104 = 2^{4} \cdot 3 \cdot 23 \) |
$23$ | split multiplicative | $24$ | \( 5808 = 2^{4} \cdot 3 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 133584ba
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 138c2, its twist by $44$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{-11}, \sqrt{-23})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-22}, \sqrt{46})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.72098134985178260206105133056.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | ord | ss | add | ord | ord | ord | split | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 6 | 3 | 1,1 | - | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.