Properties

Label 133584.dr
Number of curves $4$
Conductor $133584$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 133584.dr have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 133584.dr do not have complex multiplication.

Modular form 133584.2.a.dr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + q^{9} + 2 q^{13} + 2 q^{15} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 133584.dr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
133584.dr1 133584ba3 \([0, 1, 0, -478232, 127114260]\) \(1666957239793/301806\) \(2189999059623936\) \([2]\) \(1105920\) \(1.9471\)  
133584.dr2 133584ba4 \([0, 1, 0, -207192, -35184492]\) \(135559106353/5037138\) \(36551054263984128\) \([2]\) \(1105920\) \(1.9471\)  
133584.dr3 133584ba2 \([0, 1, 0, -32952, 1545300]\) \(545338513/171396\) \(1243703169662976\) \([2, 2]\) \(552960\) \(1.6005\)  
133584.dr4 133584ba1 \([0, 1, 0, 5768, 166868]\) \(2924207/3312\) \(-24032911491072\) \([2]\) \(276480\) \(1.2540\) \(\Gamma_0(N)\)-optimal