Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-2368x+26676\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-2368xz^2+26676z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-191835x+20022282\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(10, 64)$ | $1.3804436096086405553866632174$ | $\infty$ |
$(74, 512)$ | $2.0422346091282931373248451524$ | $\infty$ |
$(-54, 0)$ | $0$ | $2$ |
Integral points
\( \left(-54, 0\right) \), \((-36,\pm 258)\), \((-5,\pm 196)\), \((-4,\pm 190)\), \((10,\pm 64)\), \((44,\pm 98)\), \((74,\pm 512)\), \((235,\pm 3536)\), \((149004,\pm 57517278)\)
Invariants
Conductor: | $N$ | = | \( 13328 \) | = | $2^{4} \cdot 7^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $524296650752$ | = | $2^{18} \cdot 7^{6} \cdot 17 $ |
|
j-invariant: | $j$ | = | \( \frac{3048625}{1088} \) | = | $2^{-6} \cdot 5^{3} \cdot 17^{-1} \cdot 29^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.94970991853913997531792031525$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.71639233654846198665198817793$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9000957170016773$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.6770706339296355$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.8144079008779415016631601660$ |
|
Real period: | $\Omega$ | ≈ | $0.84960050997853425157894063730$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $4.7822447757470303512173981142 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.782244776 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.849601 \cdot 2.814408 \cdot 8}{2^2} \\ & \approx 4.782244776\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 13824 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{10}^{*}$ | additive | -1 | 4 | 18 | 6 |
$7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$17$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2856 = 2^{3} \cdot 3 \cdot 7 \cdot 17 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 2845 & 12 \\ 2844 & 13 \end{array}\right),\left(\begin{array}{rr} 2447 & 0 \\ 0 & 2855 \end{array}\right),\left(\begin{array}{rr} 778 & 819 \\ 21 & 400 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1429 & 420 \\ 1638 & 2521 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 2806 & 2847 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2421 & 728 \\ 826 & 1147 \end{array}\right),\left(\begin{array}{rr} 281 & 2450 \\ 126 & 421 \end{array}\right)$.
The torsion field $K:=\Q(E[2856])$ is a degree-$121286688768$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2856\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 833 = 7^{2} \cdot 17 \) |
$7$ | additive | $26$ | \( 272 = 2^{4} \cdot 17 \) |
$17$ | split multiplicative | $18$ | \( 784 = 2^{4} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 13328w
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 34a1, its twist by $28$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/6\Z\) | 2.2.28.1-578.1-a1 |
$4$ | 4.0.213248.3 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{7}, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.49503230784.7 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.13142191046656.29 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.14836301611264.7 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.45474709504.2 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.6.1829684512790043323074872436850688.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ss | add | ord | ord | split | ord | ss | ss | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | 2 | 2,2 | - | 2 | 2 | 3 | 4 | 2,2 | 2,4 | 2 | 2 | 2 | 2 | 2,2 |
$\mu$-invariant(s) | - | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.