Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-13390x+2679137\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-13390xz^2+2679137z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1084617x+1949837049\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(74, 1445)$ | $0.87558189855143324847228481621$ | $\infty$ |
Integral points
\((-146,\pm 1225)\), \((74,\pm 1445)\)
Invariants
| Conductor: | $N$ | = | \( 132940 \) | = | $2^{2} \cdot 5 \cdot 17^{2} \cdot 23$ |
|
| Discriminant: | $\Delta$ | = | $-2936818020230000$ | = | $-1 \cdot 2^{4} \cdot 5^{4} \cdot 17^{6} \cdot 23^{3} $ |
|
| j-invariant: | $j$ | = | \( -\frac{687518464}{7604375} \) | = | $-1 \cdot 2^{8} \cdot 5^{-4} \cdot 23^{-3} \cdot 139^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6500260277956748777654927007$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.0023702955809184011683146846101$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.910967035032151$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.655118582254271$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.87558189855143324847228481621$ |
|
| Real period: | $\Omega$ | ≈ | $0.38417220458939726022445678090$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 24 $ = $ 3\cdot2^{2}\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $8.0729814783617781727876874603 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.072981478 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.384172 \cdot 0.875582 \cdot 24}{1^2} \\ & \approx 8.072981478\end{aligned}$$
Modular invariants
Modular form 132940.2.a.g
For more coefficients, see the Downloads section to the right.
| Modular degree: | 746496 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $17$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $23$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2346 = 2 \cdot 3 \cdot 17 \cdot 23 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 2341 & 6 \\ 2340 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 2207 & 0 \\ 0 & 2345 \end{array}\right),\left(\begin{array}{rr} 1956 & 2329 \\ 391 & 783 \end{array}\right),\left(\begin{array}{rr} 511 & 1938 \\ 153 & 1123 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[2346])$ is a degree-$376719704064$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2346\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 6647 = 17^{2} \cdot 23 \) |
| $3$ | good | $2$ | \( 5780 = 2^{2} \cdot 5 \cdot 17^{2} \) |
| $5$ | split multiplicative | $6$ | \( 26588 = 2^{2} \cdot 17^{2} \cdot 23 \) |
| $17$ | additive | $146$ | \( 460 = 2^{2} \cdot 5 \cdot 23 \) |
| $23$ | nonsplit multiplicative | $24$ | \( 5780 = 2^{2} \cdot 5 \cdot 17^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 132940.g
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 460.c1, its twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{17}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.23.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.12167.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.1326510000.2 | \(\Z/3\Z\) | not in database |
| $6$ | 6.2.2598977.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | 12.0.3573226485213841.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.3031250555886159348206293514356800000000.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.345540216471283791195939000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | split | ord | ord | ord | add | ord | nonsplit | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 1 | 2 | 3 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.