Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-405769x+36924979\)
|
(homogenize, simplify) |
\(y^2z=x^3-405769xz^2+36924979z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-405769x+36924979\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1066, 28561)$ | $3.3118861462078087465859083487$ | $\infty$ |
Integral points
\((1066,\pm 28561)\)
Invariants
Conductor: | $N$ | = | \( 132496 \) | = | $2^{4} \cdot 7^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $3686779816502792464$ | = | $2^{4} \cdot 7^{10} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{338688}{169} \) | = | $2^{8} \cdot 3^{3} \cdot 7^{2} \cdot 13^{-2}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2554734289863604870910500024$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.87964210081048407166256504507$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8374478418484275$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.269366383883748$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.3118861462078087465859083487$ |
|
Real period: | $\Omega$ | ≈ | $0.22064015436241491618331187810$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.9229402821201375117433463489 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.922940282 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.220640 \cdot 3.311886 \cdot 4}{1^2} \\ & \approx 2.922940282\end{aligned}$$
Modular invariants
Modular form 132496.2.a.b
For more coefficients, see the Downloads section to the right.
Modular degree: | 4741632 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II$ | additive | -1 | 4 | 4 | 0 |
$7$ | $1$ | $II^{*}$ | additive | -1 | 2 | 10 | 0 |
$13$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cn | 2.2.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 28.12.0-14.a.1.2, level \( 28 = 2^{2} \cdot 7 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 13 & 24 \\ 14 & 27 \end{array}\right),\left(\begin{array}{rr} 16 & 25 \\ 7 & 5 \end{array}\right),\left(\begin{array}{rr} 25 & 24 \\ 20 & 17 \end{array}\right),\left(\begin{array}{rr} 3 & 2 \\ 20 & 23 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 25 & 4 \\ 24 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[28])$ is a degree-$16128$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/28\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 8281 = 7^{2} \cdot 13^{2} \) |
$7$ | additive | $20$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
$13$ | additive | $98$ | \( 784 = 2^{4} \cdot 7^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 132496b consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 2548a1, its twist by $364$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | \(\Q(\zeta_{7})^+\) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ss | ord | add | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 3,1 | 1 | - | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0,0 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.