Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-25692x-1593656\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-25692xz^2-1593656z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2081079x-1155532014\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(37069/100, 6321147/1000)$ | $8.7982085034399558224747784161$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 132496 \) | = | $2^{4} \cdot 7^{2} \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-5089966336$ | = | $-1 \cdot 2^{8} \cdot 7^{6} \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( -368484688 \) | = | $-1 \cdot 2^{4} \cdot 11^{6} \cdot 13$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0964076644899793431591825447$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.76613708998789697168056314825$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1130316515904957$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.5674371403634706$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.7982085034399558224747784161$ |
|
| Real period: | $\Omega$ | ≈ | $0.18854655484704522435626790483$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.3177438042991626239387533644 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.317743804 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.188547 \cdot 8.798209 \cdot 2}{1^2} \\ & \approx 3.317743804\end{aligned}$$
Modular invariants
Modular form 132496.2.a.j
For more coefficients, see the Downloads section to the right.
| Modular degree: | 207360 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_0^{*}$ | additive | -1 | 4 | 8 | 0 |
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $13$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2G | 4.2.0.1 |
| $3$ | 3B | 9.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6552 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \), index $288$, genus $6$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 12 & 433 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 5405 & 2835 \\ 3045 & 2360 \end{array}\right),\left(\begin{array}{rr} 5167 & 3780 \\ 6048 & 2395 \end{array}\right),\left(\begin{array}{rr} 127 & 945 \\ 5019 & 92 \end{array}\right),\left(\begin{array}{rr} 935 & 0 \\ 0 & 6551 \end{array}\right),\left(\begin{array}{rr} 19 & 27 \\ 4545 & 3700 \end{array}\right),\left(\begin{array}{rr} 3023 & 2772 \\ 6237 & 4157 \end{array}\right),\left(\begin{array}{rr} 6517 & 36 \\ 6516 & 37 \end{array}\right),\left(\begin{array}{rr} 13 & 6 \\ 6502 & 6529 \end{array}\right)$.
The torsion field $K:=\Q(E[6552])$ is a degree-$1095593361408$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6552\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 8281 = 7^{2} \cdot 13^{2} \) |
| $7$ | additive | $26$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
| $13$ | additive | $38$ | \( 784 = 2^{4} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 132496.j
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 676.b1, its twist by $28$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-273}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.676.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.1827904.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.293422461696.2 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.220066846272.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.264256949971631765870870221198087323603959808.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.2.25262717696362644120064921788481536.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ord | add | ss | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 5 | 1 | - | 1,1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 1 | 0 | - | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.