Properties

Label 132496.h
Number of curves $1$
Conductor $132496$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 132496.h1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 132496.h do not have complex multiplication.

Modular form 132496.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - 4 q^{5} + q^{9} - q^{11} + 8 q^{15} - q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 132496.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
132496.h1 132496g1 \([0, 1, 0, -28240, -1963116]\) \(-48013/4\) \(-207507747586048\) \([]\) \(628992\) \(1.4926\) \(\Gamma_0(N)\)-optimal