Properties

Label 132496.de
Number of curves $1$
Conductor $132496$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("de1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 132496.de1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 132496.de do not have complex multiplication.

Modular form 132496.2.a.de

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 3 q^{5} - 2 q^{9} - 3 q^{11} + 3 q^{15} + 7 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 132496.de

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
132496.de1 132496dy1 \([0, 1, 0, -367124, -84717697]\) \(12291328/169\) \(75240404418424336\) \([]\) \(1354752\) \(2.0441\) \(\Gamma_0(N)\)-optimal