Properties

Label 132496.cq
Number of curves $1$
Conductor $132496$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 132496.cq1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 132496.cq do not have complex multiplication.

Modular form 132496.2.a.cq

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - 2 q^{9} - 5 q^{11} - 2 q^{15} + 8 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 132496.cq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
132496.cq1 132496cd1 \([0, 1, 0, -268174664, 1690256826740]\) \(-2673465150439/6656\) \(-5310259385809384767488\) \([]\) \(24385536\) \(3.4075\) \(\Gamma_0(N)\)-optimal