Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-7834977059x+266844185847330\)
|
(homogenize, simplify) |
\(y^2z=x^3-7834977059xz^2+266844185847330z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-7834977059x+266844185847330\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(316128396247937/14933084401, 19179699518625112507040/1824837846886601)$ | $27.545468581166867017490593584$ | $\infty$ |
$(51870, 0)$ | $0$ | $2$ |
Integral points
\( \left(51870, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 132496 \) | = | $2^{4} \cdot 7^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $20825681334054358677641363456$ | = | $2^{17} \cdot 7^{9} \cdot 13^{14} $ |
|
j-invariant: | $j$ | = | \( \frac{22868021811807457713}{8953460393696} \) | = | $2^{-5} \cdot 3^{3} \cdot 7^{-3} \cdot 13^{-8} \cdot 349^{3} \cdot 2711^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.3985837009512573039590941272$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4500067671328869739624419132$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.087583326356874$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.779473300310151$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $27.545468581166867017490593584$ |
|
Real period: | $\Omega$ | ≈ | $0.037678916450157499213130782513$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $8.3030672740017985238971299047 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.303067274 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.037679 \cdot 27.545469 \cdot 32}{2^2} \\ & \approx 8.303067274\end{aligned}$$
Modular invariants
Modular form 132496.2.a.ci
For more coefficients, see the Downloads section to the right.
Modular degree: | 139345920 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{9}^{*}$ | additive | -1 | 4 | 17 | 5 |
$7$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
$13$ | $4$ | $I_{8}^{*}$ | additive | 1 | 2 | 14 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 728 = 2^{3} \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 480 & 559 \\ 455 & 688 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 167 & 0 \\ 0 & 727 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 324 & 559 \\ 169 & 610 \end{array}\right),\left(\begin{array}{rr} 721 & 8 \\ 720 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 722 & 723 \end{array}\right),\left(\begin{array}{rr} 456 & 715 \\ 585 & 222 \end{array}\right)$.
The torsion field $K:=\Q(E[728])$ is a degree-$1690730496$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/728\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 8281 = 7^{2} \cdot 13^{2} \) |
$7$ | additive | $32$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
$13$ | additive | $98$ | \( 784 = 2^{4} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 132496.ci
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 182.c1, its twist by $364$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{182}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{13}, \sqrt{14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.56374349711540224.25 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.1150496932888576.4 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.3440817243136.2 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ss | ord | add | ord | add | ord | ss | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1,1 | 1 | - | 1 | - | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |
$\mu$-invariant(s) | - | 0,0 | 0 | - | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.