Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-77115432x+237198557296\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-77115432xz^2+237198557296z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-6246350019x+172899009218754\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-6140, 692224)$ | $1.5277889165601686703013021839$ | $\infty$ |
$(2070532, 2979332096)$ | $6.6186881386606834296423571499$ | $\infty$ |
Integral points
\((-6140,\pm 692224)\), \((-5166,\pm 705466)\), \((12957,\pm 1188746)\), \((2070532,\pm 2979332096)\)
Invariants
Conductor: | $N$ | = | \( 132496 \) | = | $2^{4} \cdot 7^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $5049298067421037858914304$ | = | $2^{30} \cdot 7^{8} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{2633034313}{262144} \) | = | $2^{-18} \cdot 7 \cdot 13 \cdot 307^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.4765918924884228062847331304$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.22379495908275586390505911440$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9521802592414028$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.604063116859141$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $10.031725505753265937985743490$ |
|
Real period: | $\Omega$ | ≈ | $0.074548884001402443486573497026$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2^{2}\cdot1\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.9742472927477257975202472777 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.974247293 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.074549 \cdot 10.031726 \cdot 12}{1^2} \\ & \approx 8.974247293\end{aligned}$$
Modular invariants
Modular form 132496.2.a.bb
For more coefficients, see the Downloads section to the right.
Modular degree: | 22643712 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{22}^{*}$ | additive | -1 | 4 | 30 | 18 |
$7$ | $1$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
$13$ | $3$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cn | 8.4.0.1 |
$3$ | 3B | 9.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6552 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \), index $864$, genus $28$, and generators
$\left(\begin{array}{rr} 2935 & 36 \\ 2790 & 4367 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 6517 & 36 \\ 6516 & 37 \end{array}\right),\left(\begin{array}{rr} 4913 & 6516 \\ 3258 & 5903 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 6 \\ 1876 & 5647 \end{array}\right),\left(\begin{array}{rr} 4654 & 6543 \\ 4995 & 5689 \end{array}\right),\left(\begin{array}{rr} 2518 & 6543 \\ 2043 & 121 \end{array}\right),\left(\begin{array}{rr} 3277 & 36 \\ 18 & 649 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 1302 & 2467 \end{array}\right)$.
The torsion field $K:=\Q(E[6552])$ is a degree-$365197787136$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6552\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 8281 = 7^{2} \cdot 13^{2} \) |
$7$ | additive | $26$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
$13$ | additive | $74$ | \( 784 = 2^{4} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 132496.bb
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 16562.be1, its twist by $364$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.3.8281.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.39499177536.5 | \(\Z/3\Z\) | not in database |
$6$ | 6.6.118497532608.3 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$18$ | 18.6.644629991467553024676465676710741579399168.3 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.61626025331790416855244852166656.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ord | add | ord | add | ord | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 2 | 2 | - | 4 | - | 2 | 2 | 2,2 | 2 | 2 | 2 | 2 | 2 | 2 |
$\mu$-invariant(s) | - | 0 | 0 | - | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.