Properties

Label 13248v
Number of curves $2$
Conductor $13248$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 13248v have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 13248v do not have complex multiplication.

Modular form 13248.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 2 q^{7} - 6 q^{11} + 2 q^{13} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 13248v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13248.f2 13248v1 \([0, 0, 0, -876, -21584]\) \(-389017/828\) \(-158233264128\) \([2]\) \(12288\) \(0.83790\) \(\Gamma_0(N)\)-optimal
13248.f1 13248v2 \([0, 0, 0, -18156, -940880]\) \(3463512697/3174\) \(606560845824\) \([2]\) \(24576\) \(1.1845\)