Show commands: SageMath
Rank
The elliptic curves in class 13248.bj have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 13248.bj do not have complex multiplication.Modular form 13248.2.a.bj
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 13248.bj
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 13248.bj1 | 13248be4 | \([0, 0, 0, -142284, 20654480]\) | \(1666957239793/301806\) | \(57676024774656\) | \([2]\) | \(49152\) | \(1.6440\) | |
| 13248.bj2 | 13248be3 | \([0, 0, 0, -61644, -5698672]\) | \(135559106353/5037138\) | \(962612062322688\) | \([2]\) | \(49152\) | \(1.6440\) | |
| 13248.bj3 | 13248be2 | \([0, 0, 0, -9804, 252560]\) | \(545338513/171396\) | \(32754285674496\) | \([2, 2]\) | \(24576\) | \(1.2975\) | |
| 13248.bj4 | 13248be1 | \([0, 0, 0, 1716, 26768]\) | \(2924207/3312\) | \(-632933056512\) | \([2]\) | \(12288\) | \(0.95089\) | \(\Gamma_0(N)\)-optimal |