Show commands: SageMath
Rank
The elliptic curves in class 13248.bk have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 13248.bk do not have complex multiplication.Modular form 13248.2.a.bk
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 13248.bk
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
13248.bk1 | 13248r3 | \([0, 0, 0, -142284, -20654480]\) | \(1666957239793/301806\) | \(57676024774656\) | \([2]\) | \(49152\) | \(1.6440\) | |
13248.bk2 | 13248r4 | \([0, 0, 0, -61644, 5698672]\) | \(135559106353/5037138\) | \(962612062322688\) | \([2]\) | \(49152\) | \(1.6440\) | |
13248.bk3 | 13248r2 | \([0, 0, 0, -9804, -252560]\) | \(545338513/171396\) | \(32754285674496\) | \([2, 2]\) | \(24576\) | \(1.2975\) | |
13248.bk4 | 13248r1 | \([0, 0, 0, 1716, -26768]\) | \(2924207/3312\) | \(-632933056512\) | \([2]\) | \(12288\) | \(0.95089\) | \(\Gamma_0(N)\)-optimal |