Properties

Label 1323.e
Number of curves $1$
Conductor $1323$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1323.e1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1323.e do not have complex multiplication.

Modular form 1323.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - 3 q^{5} + 3 q^{8} + 3 q^{10} + 5 q^{11} - 6 q^{13} - q^{16} + 6 q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1323.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1323.e1 1323p1 \([1, -1, 1, 1, 4]\) \(27\) \(-9261\) \([]\) \(96\) \(-0.55897\) \(\Gamma_0(N)\)-optimal