Show commands: SageMath
Rank
The elliptic curves in class 1320k have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 1320k do not have complex multiplication.Modular form 1320.2.a.k
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 1320k
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 1320.i1 | 1320k1 | \([0, 1, 0, -131, 534]\) | \(15657723904/49005\) | \(784080\) | \([2]\) | \(256\) | \(-0.0015979\) | \(\Gamma_0(N)\)-optimal |
| 1320.i2 | 1320k2 | \([0, 1, 0, -76, 1040]\) | \(-192143824/1804275\) | \(-461894400\) | \([2]\) | \(512\) | \(0.34498\) |