Properties

Label 13200.s
Number of curves $4$
Conductor $13200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 13200.s have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 13200.s do not have complex multiplication.

Modular form 13200.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - q^{11} + 6 q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 13200.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13200.s1 13200b3 \([0, -1, 0, -9008, -313488]\) \(5052857764/219615\) \(3513840000000\) \([2]\) \(24576\) \(1.1708\)  
13200.s2 13200b2 \([0, -1, 0, -1508, 16512]\) \(94875856/27225\) \(108900000000\) \([2, 2]\) \(12288\) \(0.82427\)  
13200.s3 13200b1 \([0, -1, 0, -1383, 20262]\) \(1171019776/165\) \(41250000\) \([2]\) \(6144\) \(0.47770\) \(\Gamma_0(N)\)-optimal
13200.s4 13200b4 \([0, -1, 0, 3992, 104512]\) \(439608956/556875\) \(-8910000000000\) \([2]\) \(24576\) \(1.1708\)