Properties

Label 13200.p
Number of curves $4$
Conductor $13200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 13200.p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 13200.p do not have complex multiplication.

Modular form 13200.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - q^{11} - 2 q^{13} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 13200.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13200.p1 13200a3 \([0, -1, 0, -11808, -489888]\) \(5690357426/891\) \(28512000000\) \([2]\) \(16384\) \(1.0171\)  
13200.p2 13200a2 \([0, -1, 0, -808, -5888]\) \(3650692/1089\) \(17424000000\) \([2, 2]\) \(8192\) \(0.67056\)  
13200.p3 13200a1 \([0, -1, 0, -308, 2112]\) \(810448/33\) \(132000000\) \([2]\) \(4096\) \(0.32398\) \(\Gamma_0(N)\)-optimal
13200.p4 13200a4 \([0, -1, 0, 2192, -41888]\) \(36382894/43923\) \(-1405536000000\) \([2]\) \(16384\) \(1.0171\)