Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-1387x-19529\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-1387xz^2-19529z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-22187x-1272026\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-85/4, 81/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 130 \) | = | $2 \cdot 5 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $260$ | = | $2^{2} \cdot 5 \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{294889639316481}{260} \) | = | $2^{-2} \cdot 3^{3} \cdot 5^{-1} \cdot 11^{3} \cdot 13^{-1} \cdot 2017^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.19578703008235126746546993134$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.19578703008235126746546993134$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0233635688467793$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.84486625362121$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.78235687720051918418978631529$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.5647137544010383683795726306 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 1.564713754 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.782357 \cdot 1.000000 \cdot 2}{2^2} \\ & \approx 1.564713754\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 32 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.48.0.55 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1040 = 2^{4} \cdot 5 \cdot 13 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 328 & 9 \\ 423 & 26 \end{array}\right),\left(\begin{array}{rr} 15 & 166 \\ 754 & 995 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 536 \\ 898 & 697 \end{array}\right),\left(\begin{array}{rr} 1025 & 16 \\ 1024 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 8 & 65 \end{array}\right),\left(\begin{array}{rr} 638 & 3 \\ 301 & 20 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 527 & 530 \\ 922 & 983 \end{array}\right)$.
The torsion field $K:=\Q(E[1040])$ is a degree-$1610219520$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 65 = 5 \cdot 13 \) |
$5$ | split multiplicative | $6$ | \( 26 = 2 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 10 = 2 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 130b
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{65}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | 2.0.4.1-8450.5-c10 |
$2$ | \(\Q(\sqrt{-65}) \) | \(\Z/4\Z\) | not in database |
$4$ | 4.2.17576000.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{65})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.0.1040.2 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.4942652416000000.17 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.4942652416000000.45 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.4569760000.3 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.1799782400000.15 | \(\Z/16\Z\) | not in database |
$8$ | 8.0.12166529024000.6 | \(\Z/16\Z\) | not in database |
$8$ | 8.2.624629070000.4 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 5 | 13 |
---|---|---|---|
Reduction type | split | split | split |
$\lambda$-invariant(s) | 1 | 1 | 1 |
$\mu$-invariant(s) | 2 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.