Properties

Label 1305.d
Number of curves $2$
Conductor $1305$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 1305.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1305.d1 1305f1 \([0, 0, 1, -102, -405]\) \(-160989184/3915\) \(-2854035\) \([]\) \(160\) \(0.024133\) \(\Gamma_0(N)\)-optimal
1305.d2 1305f2 \([0, 0, 1, 438, -1728]\) \(12747309056/9145875\) \(-6667342875\) \([3]\) \(480\) \(0.57344\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1305.d have rank \(0\).

Complex multiplication

The elliptic curves in class 1305.d do not have complex multiplication.

Modular form 1305.2.a.d

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{5} + 2 q^{7} - 3 q^{11} + 2 q^{13} + 4 q^{16} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.