Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-24426057x+27462146265\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-24426057xz^2+27462146265z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-31656169899x+1281368864649510\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(302108/49, 113343077/343)$ | $8.5194112026297773522300643295$ | $\infty$ |
$(-5430, 2715)$ | $0$ | $2$ |
$(1194, -597)$ | $0$ | $2$ |
Integral points
\( \left(-5430, 2715\right) \), \( \left(1194, -597\right) \)
Invariants
Conductor: | $N$ | = | \( 130134 \) | = | $2 \cdot 3 \cdot 23^{2} \cdot 41$ |
|
Discriminant: | $\Delta$ | = | $606846400002620989632576$ | = | $2^{6} \cdot 3^{4} \cdot 23^{10} \cdot 41^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{10887214909148618977}{4099319456261184} \) | = | $2^{-6} \cdot 3^{-4} \cdot 23^{-4} \cdot 41^{-4} \cdot 73^{3} \cdot 97^{3} \cdot 313^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2631548165665571635658267968$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.6954077086019823181624503809$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9818715313962838$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.31975067741844$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.5194112026297773522300643295$ |
|
Real period: | $\Omega$ | ≈ | $0.083578958547632307028255406098$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 384 $ = $ ( 2 \cdot 3 )\cdot2^{2}\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $17.089044378115883094957518748 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 17.089044378 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.083579 \cdot 8.519411 \cdot 384}{4^2} \\ & \approx 17.089044378\end{aligned}$$
Modular invariants
Modular form 130134.2.a.z
For more coefficients, see the Downloads section to the right.
Modular degree: | 21086208 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$23$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
$41$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.48.0.77 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7544 = 2^{3} \cdot 23 \cdot 41 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 5 & 4 \\ 7540 & 7541 \end{array}\right),\left(\begin{array}{rr} 2295 & 7536 \\ 1636 & 7511 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 5664 \\ 22 & 1905 \end{array}\right),\left(\begin{array}{rr} 3 & 1890 \\ 1882 & 7539 \end{array}\right),\left(\begin{array}{rr} 7537 & 8 \\ 7536 & 9 \end{array}\right),\left(\begin{array}{rr} 5705 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[7544])$ is a degree-$5888810188800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7544\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 529 = 23^{2} \) |
$3$ | split multiplicative | $4$ | \( 21689 = 23^{2} \cdot 41 \) |
$23$ | additive | $288$ | \( 246 = 2 \cdot 3 \cdot 41 \) |
$41$ | split multiplicative | $42$ | \( 3174 = 2 \cdot 3 \cdot 23^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 130134z
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 5658g3, its twist by $-23$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{23}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{-23})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{-23})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{23}, \sqrt{41})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.18339659776.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.95072796278784.35 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | ord | ss | ord | ord | ord | ord | add | ord | ss | ord | split | ord | ord |
$\lambda$-invariant(s) | 5 | 2 | 3 | 1,1 | 1 | 1 | 1 | 1 | - | 1 | 1,1 | 1 | 2 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.