Show commands: SageMath
Rank
The elliptic curves in class 130130bq have rank \(2\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 130130bq do not have complex multiplication.Modular form 130130.2.a.bq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 130130bq
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
130130.bq3 | 130130bq1 | \([1, 0, 0, -154385, 23434345]\) | \(-84309998289049/414124480\) | \(-1998899767184320\) | \([2]\) | \(1327104\) | \(1.7841\) | \(\Gamma_0(N)\)-optimal |
130130.bq2 | 130130bq2 | \([1, 0, 0, -2473065, 1496723617]\) | \(346553430870203929/8300600\) | \(40065410785400\) | \([2]\) | \(2654208\) | \(2.1307\) | |
130130.bq4 | 130130bq3 | \([1, 0, 0, 383880, 124520512]\) | \(1296134247276791/2137096192000\) | \(-10315355133411328000\) | \([2]\) | \(3981312\) | \(2.3334\) | |
130130.bq1 | 130130bq4 | \([1, 0, 0, -2644600, 1277160000]\) | \(423783056881319689/99207416000000\) | \(478855248415544000000\) | \([2]\) | \(7962624\) | \(2.6800\) |