Show commands: SageMath
Rank
The elliptic curves in class 130050dq have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 130050dq do not have complex multiplication.Modular form 130050.2.a.dq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 17 \\ 17 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 130050dq
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 130050.o2 | 130050dq1 | \([1, -1, 0, -684117, -217623209]\) | \(-297756989/2\) | \(-237839097656250\) | \([]\) | \(1468800\) | \(1.9404\) | \(\Gamma_0(N)\)-optimal |
| 130050.o1 | 130050dq2 | \([1, -1, 0, -42950367, 121466910541]\) | \(-882216989/131072\) | \(-1301843756669184000000000\) | \([]\) | \(24969600\) | \(3.3570\) |