Properties

Label 130050.bd
Number of curves $1$
Conductor $130050$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 130050.bd1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 130050.bd do not have complex multiplication.

Modular form 130050.2.a.bd

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{7} - q^{8} + 4 q^{11} + 3 q^{13} + 2 q^{14} + q^{16} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 130050.bd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
130050.bd1 130050gx1 \([1, -1, 0, -4776357, -1710842859]\) \(8855663715/4194304\) \(5707591614424468684800\) \([]\) \(8401536\) \(2.8688\) \(\Gamma_0(N)\)-optimal