Properties

Label 130050.y
Number of curves $4$
Conductor $130050$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 130050.y have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 130050.y do not have complex multiplication.

Modular form 130050.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{7} - q^{8} + 6 q^{13} + 2 q^{14} + q^{16} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 130050.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
130050.y1 130050eu4 \([1, -1, 0, -4746267, 3865968891]\) \(211293405175481/6973568802\) \(390255837955636781250\) \([2]\) \(6553600\) \(2.7243\)  
130050.y2 130050eu3 \([1, -1, 0, -4708017, 3933097641]\) \(206226044828441/236196\) \(13218033767062500\) \([2]\) \(3276800\) \(2.3777\)  
130050.y3 130050eu2 \([1, -1, 0, -653517, -203180859]\) \(551569744601/2592\) \(145053868500000\) \([2]\) \(1310720\) \(1.9196\)  
130050.y4 130050eu1 \([1, -1, 0, -41517, -3056859]\) \(141420761/9216\) \(515747088000000\) \([2]\) \(655360\) \(1.5730\) \(\Gamma_0(N)\)-optimal