Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2+90981x+5601258\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z+90981xz^2+5601258z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+1455693x+359936206\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-38, 1464)$ | $1.5425330144732201194517452087$ | $\infty$ |
| $(-237/4, 237/8)$ | $0$ | $2$ |
Integral points
\( \left(-38, 1464\right) \), \( \left(-38, -1426\right) \), \( \left(4722, 322764\right) \), \( \left(4722, -327486\right) \)
Invariants
| Conductor: | $N$ | = | \( 13005 \) | = | $3^{2} \cdot 5 \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-61861949300390625$ | = | $-1 \cdot 3^{8} \cdot 5^{8} \cdot 17^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{4733169839}{3515625} \) | = | $3^{-2} \cdot 5^{-8} \cdot 23^{3} \cdot 73^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.9102088345592917530874094910$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.055703981802871132734980436399$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0558519748642754$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.842012347426283$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.5425330144732201194517452087$ |
|
| Real period: | $\Omega$ | ≈ | $0.22351861929357509036882883196$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2^{3}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.5165575937569670832599468054 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.516557594 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.223519 \cdot 1.542533 \cdot 64}{2^2} \\ & \approx 5.516557594\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 81920 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $5$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
| $17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.48.0.197 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8160 = 2^{5} \cdot 3 \cdot 5 \cdot 17 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5575 & 3808 \\ 1258 & 951 \end{array}\right),\left(\begin{array}{rr} 3367 & 6256 \\ 2295 & 3673 \end{array}\right),\left(\begin{array}{rr} 6733 & 6256 \\ 6494 & 8025 \end{array}\right),\left(\begin{array}{rr} 8129 & 32 \\ 8128 & 33 \end{array}\right),\left(\begin{array}{rr} 3839 & 0 \\ 0 & 8159 \end{array}\right),\left(\begin{array}{rr} 4897 & 7208 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 4 & 129 \end{array}\right),\left(\begin{array}{rr} 25 & 16 \\ 6424 & 7049 \end{array}\right)$.
The torsion field $K:=\Q(E[8160])$ is a degree-$924089057280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 2601 = 3^{2} \cdot 17^{2} \) |
| $3$ | additive | $8$ | \( 1445 = 5 \cdot 17^{2} \) |
| $5$ | split multiplicative | $6$ | \( 2601 = 3^{2} \cdot 17^{2} \) |
| $17$ | additive | $146$ | \( 45 = 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 13005.p
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 15.a8, its twist by $-51$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{51}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-51}) \) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{51})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{6}, \sqrt{34})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-6}, \sqrt{-34})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.443364212736.2 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.1082432160000.51 | \(\Z/16\Z\) | not in database |
| $8$ | 8.2.9247184116875.1 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | add | split | ss | ord | ord | add | ord | ss | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 9 | - | 4 | 1,1 | 1 | 1 | - | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 1 | - | 0 | 0,0 | 0 | 0 | - | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.