Properties

Label 129600.jb
Number of curves $1$
Conductor $129600$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("jb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 129600.jb1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 129600.jb do not have complex multiplication.

Modular form 129600.2.a.jb

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{7} + 4 q^{11} + 6 q^{13} + 2 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 129600.jb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129600.jb1 129600dp1 \([0, 0, 0, 40500, 2430000]\) \(1080\) \(-6802444800000000\) \([]\) \(933120\) \(1.7253\) \(\Gamma_0(N)\)-optimal