Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-15660x-749520\)
|
(homogenize, simplify) |
\(y^2z=x^3-15660xz^2-749520z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-15660x-749520\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-74, 64)$ | $1.2131558991416664052984912062$ | $\infty$ |
Integral points
\((-74,\pm 64)\), \((184,\pm 1612)\)
Invariants
Conductor: | $N$ | = | \( 129600 \) | = | $2^{6} \cdot 3^{4} \cdot 5^{2}$ |
|
Discriminant: | $\Delta$ | = | $3095868211200$ | = | $2^{21} \cdot 3^{10} \cdot 5^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{1097505}{8} \) | = | $2^{-3} \cdot 3^{2} \cdot 5 \cdot 29^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2280872746569048858295865818$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.99538338881212121689242585336$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9281577377478606$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.44796810627877$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.2131558991416664052984912062$ |
|
Real period: | $\Omega$ | ≈ | $0.42696516051208036093929844448$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2^{2}\cdot3\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.2157036384383852413559858208 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.215703638 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.426965 \cdot 1.213156 \cdot 12}{1^2} \\ & \approx 6.215703638\end{aligned}$$
Modular invariants
Modular form 129600.2.a.ff
For more coefficients, see the Downloads section to the right.
Modular degree: | 248832 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{11}^{*}$ | additive | 1 | 6 | 21 | 3 |
$3$ | $3$ | $IV^{*}$ | additive | 1 | 4 | 10 | 0 |
$5$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 8.2.0.2 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 51 & 2 \\ 10 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 115 & 6 \\ 114 & 7 \end{array}\right),\left(\begin{array}{rr} 31 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 59 & 114 \\ 57 & 101 \end{array}\right),\left(\begin{array}{rr} 114 & 119 \\ 95 & 69 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$2211840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 2025 = 3^{4} \cdot 5^{2} \) |
$3$ | additive | $4$ | \( 160 = 2^{5} \cdot 5 \) |
$5$ | additive | $10$ | \( 5184 = 2^{6} \cdot 3^{4} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 129600.ff
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 4050.i2, its twist by $-24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-30}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.3.16200.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.6.2099520000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.94478400000.8 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.31492800000.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.1062353018033006514536448000000000000000.5 | \(\Z/9\Z\) | not in database |
$18$ | 18.6.5533088635588575596544000000000000000.3 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | add | ord | ord | ord | ord | ord | ss | ss | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | - | 1 | 1 | 1 | 1 | 1 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.