Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-67500x+6210000\)
|
(homogenize, simplify) |
\(y^2z=x^3-67500xz^2+6210000z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-67500x+6210000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-150, 3600)$ | $0.36291993443772879888514010225$ | $\infty$ |
Integral points
\((-150,\pm 3600)\), \((106,\pm 496)\), \((300,\pm 3600)\)
Invariants
Conductor: | $N$ | = | \( 129600 \) | = | $2^{6} \cdot 3^{4} \cdot 5^{2}$ |
|
Discriminant: | $\Delta$ | = | $3023308800000000$ | = | $2^{17} \cdot 3^{10} \cdot 5^{8} $ |
|
j-invariant: | $j$ | = | \( 11250 \) | = | $2 \cdot 3^{2} \cdot 5^{4}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7104324456719797723138287476$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2599949089674344085904606774$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9848639106836$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.8202902482701706$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.36291993443772879888514010225$ |
|
Real period: | $\Omega$ | ≈ | $0.43889921354257385826109167750$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 36 $ = $ 2^{2}\cdot3\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.7342698569310989106111118453 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.734269857 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.438899 \cdot 0.362920 \cdot 36}{1^2} \\ & \approx 5.734269857\end{aligned}$$
Modular invariants
Modular form 129600.2.a.bg
For more coefficients, see the Downloads section to the right.
Modular degree: | 691200 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{7}^{*}$ | additive | -1 | 6 | 17 | 0 |
$3$ | $3$ | $IV^{*}$ | additive | 1 | 4 | 10 | 0 |
$5$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 8.2.0.2 |
$5$ | 5S4 | 5.5.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 40.10.0.b.1, level \( 40 = 2^{3} \cdot 5 \), index $10$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 15 & 36 \end{array}\right),\left(\begin{array}{rr} 31 & 12 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 4 & 9 \\ 27 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 16 \\ 8 & 3 \end{array}\right),\left(\begin{array}{rr} 31 & 10 \\ 30 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[40])$ is a degree-$73728$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/40\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 2025 = 3^{4} \cdot 5^{2} \) |
$3$ | additive | $4$ | \( 160 = 2^{5} \cdot 5 \) |
$5$ | additive | $10$ | \( 5184 = 2^{6} \cdot 3^{4} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 129600.bg consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 16200.c1, its twist by $-40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.3.16200.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.6.2099520000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.7255941120000.15 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | add | ord | ord | ss | ord | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | - | 1 | 1 | 1,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | - | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.