Properties

Label 129472x
Number of curves $1$
Conductor $129472$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 129472x1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 129472x do not have complex multiplication.

Modular form 129472.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} - 4 q^{5} - q^{7} + 6 q^{9} + 2 q^{13} + 12 q^{15} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 129472x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129472.a1 129472x1 \([0, 0, 0, -216172, -6681680]\) \(610929/343\) \(627227964804431872\) \([]\) \(3760128\) \(2.1052\) \(\Gamma_0(N)\)-optimal