Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-3153953x-2163187649\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-3153953xz^2-2163187649z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-255470220x-1576197385488\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1957198181860909/829174148100, 44980148205638598483773/755037687518379000)$ | $32.738103542614895468643598854$ | $\infty$ |
| $(2051, 0)$ | $0$ | $2$ |
Integral points
\( \left(2051, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 129472 \) | = | $2^{6} \cdot 7 \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-11611047779513663488$ | = | $-1 \cdot 2^{36} \cdot 7 \cdot 17^{6} $ |
|
| j-invariant: | $j$ | = | \( -\frac{548347731625}{1835008} \) | = | $-1 \cdot 2^{-18} \cdot 5^{3} \cdot 7^{-1} \cdot 1637^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5228548330111378071227817852$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.066527390143111802872166294076$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0293250379726038$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.800850816089441$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $32.738103542614895468643598854$ |
|
| Real period: | $\Omega$ | ≈ | $0.056632890358160229771490004937$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.7081068569260127490859465333 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.708106857 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.056633 \cdot 32.738104 \cdot 8}{2^2} \\ & \approx 3.708106857\end{aligned}$$
Modular invariants
Modular form 129472.2.a.q
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2654208 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{26}^{*}$ | additive | 1 | 6 | 36 | 18 |
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $17$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.1 |
| $3$ | 3B | 9.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8568 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 17 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 7957 & 3060 \\ 4624 & 8093 \end{array}\right),\left(\begin{array}{rr} 2143 & 3060 \\ 2278 & 4897 \end{array}\right),\left(\begin{array}{rr} 8533 & 36 \\ 8532 & 37 \end{array}\right),\left(\begin{array}{rr} 3023 & 0 \\ 0 & 8567 \end{array}\right),\left(\begin{array}{rr} 3316 & 5049 \\ 3247 & 2194 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 3240 & 6139 \end{array}\right),\left(\begin{array}{rr} 4283 & 5508 \\ 2006 & 3671 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right)$.
The torsion field $K:=\Q(E[8568])$ is a degree-$1091580198912$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8568\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 2023 = 7 \cdot 17^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 18496 = 2^{6} \cdot 17^{2} \) |
| $17$ | additive | $146$ | \( 448 = 2^{6} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 6, 9 and 18.
Its isogeny class 129472l
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 14a3, its twist by $136$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-102}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.129472.2 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-7}, \sqrt{-102})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.4402875585024.1 | \(\Z/6\Z\) | not in database |
| $6$ | 6.0.118877640795648.2 | \(\Z/18\Z\) | not in database |
| $8$ | 8.0.160991840321536.41 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.821386940416.10 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.1357802901504.6 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/18\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ss | nonsplit | ss | ord | add | ord | ss | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 3 | 1,1 | 1 | 1,1 | 1 | - | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 2 | 0,0 | 0 | 0,0 | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.