Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2+55103x+63743681\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z+55103xz^2+63743681z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+4463316x+46482533424\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(337, 10976)$ | $0.47509784238323497035570686364$ | $\infty$ |
Integral points
\((-349,\pm 1372)\), \((209,\pm 9184)\), \((337,\pm 10976)\)
Invariants
| Conductor: | $N$ | = | \( 129472 \) | = | $2^{6} \cdot 7 \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-1767046439369179136$ | = | $-1 \cdot 2^{19} \cdot 7^{9} \cdot 17^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{845095823}{80707214} \) | = | $2^{-1} \cdot 7^{-9} \cdot 11^{3} \cdot 13^{3} \cdot 17^{2}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1807643714510808206762755536$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.19663915259242416313391583212$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0533569673638747$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.202154348904867$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.47509784238323497035570686364$ |
|
| Real period: | $\Omega$ | ≈ | $0.20292971921116608421062078976$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 36 $ = $ 2^{2}\cdot3^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.4708129830957856981766170537 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.470812983 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.202930 \cdot 0.475098 \cdot 36}{1^2} \\ & \approx 3.470812983\end{aligned}$$
Modular invariants
Modular form 129472.2.a.z
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1741824 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{9}^{*}$ | additive | 1 | 6 | 19 | 1 |
| $7$ | $9$ | $I_{9}$ | split multiplicative | -1 | 1 | 9 | 9 |
| $17$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 168 = 2^{3} \cdot 3 \cdot 7 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 122 & 51 \\ 31 & 91 \end{array}\right),\left(\begin{array}{rr} 83 & 162 \\ 81 & 149 \end{array}\right),\left(\begin{array}{rr} 73 & 6 \\ 51 & 19 \end{array}\right),\left(\begin{array}{rr} 127 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 163 & 6 \\ 162 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[168])$ is a degree-$9289728$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 2023 = 7 \cdot 17^{2} \) |
| $3$ | good | $2$ | \( 18496 = 2^{6} \cdot 17^{2} \) |
| $7$ | split multiplicative | $8$ | \( 18496 = 2^{6} \cdot 17^{2} \) |
| $17$ | additive | $114$ | \( 448 = 2^{6} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 129472bn
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 4046r2, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-6}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.16184.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.14667623936.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.124696184832.41 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.56575120896.6 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.9540931977840462898447743108394254336.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.2.228111793173998398524509176235223416832.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ord | split | ss | ord | add | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 5 | 1 | 2 | 1,1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 1 | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.