Show commands: SageMath
Rank
The elliptic curves in class 129472.q have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 129472.q do not have complex multiplication.Modular form 129472.2.a.q
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 9 & 18 & 6 \\ 2 & 1 & 6 & 18 & 9 & 3 \\ 3 & 6 & 1 & 3 & 6 & 2 \\ 9 & 18 & 3 & 1 & 2 & 6 \\ 18 & 9 & 6 & 2 & 1 & 3 \\ 6 & 3 & 2 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 129472.q
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
129472.q1 | 129472l6 | \([0, 1, 0, -50503713, -138161168321]\) | \(2251439055699625/25088\) | \(158744793860538368\) | \([2]\) | \(5308416\) | \(2.8694\) | |
129472.q2 | 129472l5 | \([0, 1, 0, -3153953, -2163187649]\) | \(-548347731625/1835008\) | \(-11611047779513663488\) | \([2]\) | \(2654208\) | \(2.5229\) | |
129472.q3 | 129472l4 | \([0, 1, 0, -656993, -168227585]\) | \(4956477625/941192\) | \(5955410157174259712\) | \([2]\) | \(1769472\) | \(2.3201\) | |
129472.q4 | 129472l2 | \([0, 1, 0, -194593, 32953407]\) | \(128787625/98\) | \(620096851017728\) | \([2]\) | \(589824\) | \(1.7708\) | |
129472.q5 | 129472l1 | \([0, 1, 0, -9633, 733375]\) | \(-15625/28\) | \(-177170528862208\) | \([2]\) | \(294912\) | \(1.4242\) | \(\Gamma_0(N)\)-optimal |
129472.q6 | 129472l3 | \([0, 1, 0, 82847, -15376641]\) | \(9938375/21952\) | \(-138901694627971072\) | \([2]\) | \(884736\) | \(1.9735\) |