Properties

Label 129472.m
Number of curves $1$
Conductor $129472$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 129472.m1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 129472.m do not have complex multiplication.

Modular form 129472.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - 2 q^{5} - q^{7} + q^{9} - 4 q^{13} + 4 q^{15} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 129472.m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129472.m1 129472cr1 \([0, 1, 0, 6551, -270033]\) \(4352/7\) \(-50002229337088\) \([]\) \(293760\) \(1.3137\) \(\Gamma_0(N)\)-optimal