Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-345644x+76957232\)
|
(homogenize, simplify) |
\(y^2z=x^3-345644xz^2+76957232z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-345644x+76957232\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-476, 11560)$ | $2.5518408189335300658104537541$ | $\infty$ |
$(374, 0)$ | $0$ | $2$ |
Integral points
\((-476,\pm 11560)\), \( \left(374, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 129472 \) | = | $2^{6} \cdot 7 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $84333171738411008$ | = | $2^{22} \cdot 7^{2} \cdot 17^{7} $ |
|
j-invariant: | $j$ | = | \( \frac{721734273}{13328} \) | = | $2^{-4} \cdot 3^{3} \cdot 7^{-2} \cdot 13^{3} \cdot 17^{-1} \cdot 23^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0423093739646577708564662844$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.41401806890336823339414920672$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8926535816815708$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.2368673117406255$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.5518408189335300658104537541$ |
|
Real period: | $\Omega$ | ≈ | $0.34150996938887524048708375498$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.9718326396741774238642342241 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.971832640 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.341510 \cdot 2.551841 \cdot 32}{2^2} \\ & \approx 6.971832640\end{aligned}$$
Modular invariants
Modular form 129472.2.a.bz
For more coefficients, see the Downloads section to the right.
Modular degree: | 884736 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{12}^{*}$ | additive | 1 | 6 | 22 | 4 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$17$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.111 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 136 = 2^{3} \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 77 & 82 \\ 46 & 117 \end{array}\right),\left(\begin{array}{rr} 124 & 135 \\ 33 & 130 \end{array}\right),\left(\begin{array}{rr} 25 & 20 \\ 22 & 87 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 129 & 8 \\ 128 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 130 & 131 \end{array}\right)$.
The torsion field $K:=\Q(E[136])$ is a degree-$2506752$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/136\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 289 = 17^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 18496 = 2^{6} \cdot 17^{2} \) |
$17$ | additive | $162$ | \( 448 = 2^{6} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 129472.bz
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 238.d3, its twist by $136$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{34}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.949523303120896.41 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.821386940416.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.1581879721984.6 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ss | ord | nonsplit | ss | ord | add | ord | ss | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 3,1 | 1 | 1 | 1,1 | 1 | - | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0,0 | 0 | 0 | 0,0 | 0 | - | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.